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1. Introduction

A one-group isotropic Sz transport problem in a homogeneous slab is solved analytically and used to
derive an analytic expression for the Feynman Y (Ref. 1) for this special case. Analytic derivatives of the
Feynman Y are then taken with respect to an arbitrary input parameter. The analytic solution is used to
verify the results of the new Feynman Y sensitivity capability that Alex Clark (NC State/XCP-3) has
integrated into the neutron sensitivity code SENSMG (Refs. 2 and 3). SENSMG’s Feynman Y capability
relies on the multigroup discrete-ordinates code PARTISN (Ref. 4) and the methodology developed by
Mattingly> to compute the Feynman Y deterministically,® and the Feynman Y sensitivity capability relies
on work by O’Brien et al.,” extended by Clark.®®

We have previously developed an analytic S» transport problem!? for verification of PARTISN’s
treatment of upscattering'' and negative sources.'? The goal of all of these S solutions is to verify the
discrete ordinates coding, including the quadratures and other logic in SENSMG. Thus, an analytic
solution of the Sz problem is used rather than an analytic solution of the continuous-angle transport
problem.

The next section of this report derives the Feynman Y for a homogeneous one-group slab with 2
quadrature and isotropic scattering and fission. Section III derives the first derivative with respect to an
arbitrary input parameter that is a material property, and Sec. IV derives the first derivative with respect
to the slab width. Section V compares SENSMG results with the analytic results for a two-isotope test
problem. Section VI is a summary and conclusions.
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II. Derivation

Consider a homogeneous slab of width 7, . The material has a constant isotropic neutron source rate

density g. We consider one neutron energy group. Scattering is isotropic. The induced-fission spectrum
in one group is 1, but because we will seek the unconstrained sensitivity,'* we will carry it along in the
equations. The quantity of interest is the leakage from the right side of the slab convolved with a
response function.

We consider two directions, right and left, with £, the right-going direction cosine and g the left-
going. The directions are constrained to satisfy s, =—g . This problem is then a regular Sz discrete
ordinates calculation.

The equations for the forward right-going and left-going fluxes are

7 Wér(r) +Zy, (N =3Z(, () +y (=3 02, (p, (N +y (1) =q (12)
and
0
# War(r) FEYL ()5 () ()= 0, 1 (D v () =4, (1b)
with vacuum boundary conditions
W+ (_%rd) = O (23)
and
v (k) =0. (20)

(The coordinate system is centered in the middle of the slab.) In Egs. (1a) and (Ib), %,, X, v, and x

are the material total cross section, scattering cross section, product of the number of neutrons per
fission and fission cross section, and induced-fission spectrum, respectively.

The equations for the adjoint right-going and left-going fluxes are

a i r * * * * *
1 D 5 ()= O+ )=, )+ () =0 (a)
and
al// (r) 1 * £ _l * B3 _
— TV ()= EE ()Y ) = VR (L () +y (1) =0, (3b)
with a vacuum boundary condition on the left,
lr//+(_%rd):07 (43)
and a source on the right,
v (3r,)=%,. (4b)

These adjoint equations [Egs. (3a) and (3b)] do not have the usual negative sign in front of the spatial
derivative term because these are the computational equations (i.e. the equations that will actually be
solved) obtained by replacing u with —u and recognizing that adjoint particles travel backwards. Thus,
“left-going” and “right-going” here are in the computational sense, not the mathematical sense, in that
right-going computational adjoint particles are really going to the right.
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First rearrange Eq. (1a) and take the derivative with respect to 7 to yield

O’y (r) Ay, (r) _1 dy_(r)
A T+(Zt —%ZS —%/’{’sz )T = 5(2‘ + ZVZ_,’ )T
Rearrange Eq. (1b) to yield
oy _(r 1 1
Yy _1, (=
or u W
and use Eq. (6) in Eq. (5) to yield

Oy (r) oy, (r) 1 :
s +(Zz—%zs—%szf)T—ﬁ(stVZf) v.(r)

1
L —E 2, —%ZVZf)l//_(r)+E(ZS +}(V2f)l//+(l”),

:ﬁ(Zs +;(v2f)q—i(zs V2 )(Z -1 3 0E, (),

Rearrange Eq. (1a) to yield

y_(r)= ;[—q +u
- (ZS +yVE f) "
and use Eq. (8) in Eq. (7) (and recognize that x, =—u ) to yield

WAGED 2
T—ﬂ—’z(zt RS ORAGE —ﬂ—ZQ-

+ +

51//;(’”) +(Zz ~1ly _%ZvZf)%(r)},

The right-going forward flux is
v, (r)=c, cos(Ar)+c, sin(Ar)+y,,
where the particular solution v, is

_ q
L, X - yvE,

Yp

and A is

1
H,

A=— I, -Z, - %))

May 16, 2019

()

(6)

(7)

(8)

)

(10)

(11)

(12)

The negative sign precedes the first X, because, for the problem of this paper, the term in the

parentheses is negative. The trigonometric solution of Eq. (10) accounts for the imaginary roots of the

characteristic equation.

The neutron source rate density g is

I
q= zqiNi + 9o.n)>

i=l1

(13)

where N, is the atom density of isotope i and g, is the neutron source rate from the spontaneous fission

of isotope i per atom of isotope i (or per 10** atoms, depending on the units of N,). The simplest way to

obtain ¢; is to use the neutron source rate density from the spontaneous fission of isotope i (in units of
neutrons/cm>:s) and divide by the atom density of isotope i. Also in Eq. (13), (o 18 the source rate

density of (a,n) neutrons. The test problem will not include (a,n) neutrons.

Evaluating Eq. (1a) at » =1, (the right boundary) with Eq. (2b) and using Eq. (2a) leads to the

following system of equations for the constants ¢, and c,:
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cos(3Ar,) —sin(§ Ar,)
><|:cl j| _ {_(Ez 7% __ZVE W p +Q:|

%) Y
The determinant of the coefficient matrix of Eq. (14) is
D= p Asin®($ Ar)) — (2, —$2, -4 yVE ) cos($ Ar,)sin($ Ar,)

—p, Acos’ (3 Ar)— (2, —1Z, —% yVZ )sin($ Ar, ) cos(: Ar;)
=ul (sin2 (3 Ar,)—cos* (3 Ar, )) —(Z, —31Z, -3 pZ)sin(Ar,)
=uA (— —1cos(Ar,) —%—3cos(Ar, )) (2, —3Z, —3 7V ,)sin(Ar,)
=—p, Acos(Ar,) = (T, =3, —3 yVZ ,)sin(Ar,). (15)
Using Cramer’s rule, ¢, and ¢, are
= %[(2; —3Z, =3 XVZ Wy, sin(z Ar, ) —gsin(3 Ar, )

+u Acos(z Ar )y, + (2, —3Z, —5 V2 )sin(z 47, )1//P]

{—,uj sin(z4r,)+(Z, —3X, —3 yVE,)cos(z Ary)  p,Acos(z3Ar,) + (2, —3Z, —5 ¥V, )sin(z Ar,)

(14)

1 .
= 5[2(2 T2, =3 XVZ W psin(z Ar,) —gsin(3 Ar, ) + 1, A cos(z lrd)t//P} (16)
and
= —[,u+/1 sin(z A7 )y, —(Z, —3Z, —3 xVE,)cos(z A1, )y,

+(Z, —3Z, =3 YV )W cos(z Ar, ) — g cos(z lrd)]

=%(,u+/15in(%/1rd)l//l, —qcos(%ﬂrd)). (17)
Using ¢ =(Z, -Z, - yvZ )y, from Eq. (11), ¢, and ¢, are
¢ = %(z, sin(L Ar,) + p, Acos(E Ar,)) (18)
and
¢, = %[ pAsin( )~ (2, ~ %, - yv2 ) cos(t Ar,) | (19)

By symmetry, the left-going forward flux is
w_(r)=c, cos(Ar)—c, sin(Ar) +yp. (20)

The steps leading to Eq. (9) from Egs. (1a) and (1b) can be done with Egs. (3a) and (3b) to lead to
the following equation for the right-going adjoint flux:

821//+(r) Z (Z —Z - VX, )l//i(r):0. (21)
or’

The right-going adjoint flux is
. (r) = c, cos(Ar)+c, sin(Ar). (22)

An Equal Opportunity Employer / Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA
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Evaluating Eq. (3a) at » =1, (the right boundary) with Eq. (4b) and using Eq. (4a) leads to the
following system of equations for the constants ¢, and c,:
—p Asin(z Ar)+(Z, —3Z =3 yVE,)cos(z Ar,)  p Acos(z Ar,) +(Z, =32 —5 yVZ )sin(3 Ar,)
cos(3 Ar,) —sin(§ Ar,)
{Q} _ F(ZS + ;(vzf)zd} &)
c, 0
The coefficient matrix of Eq. (23) is the same as the coefficient matrix of Eq. (14), so the determinant is
the same, D of Eq. (15). Using Cramer’s rule, c¢; and c, are

= .
¢ = 2Dd (2, + yVZ,)sin(3 Ar) (24)
and
=)
c, = 2Dd (Z, + xVZ,)cos(3 Ar,). (25)

Similarly, the left-going adjoint flux is
w (r) = c; cos(Ar) + ¢, sin(Ar), (26)
where ¢, and ¢, are the solution of
{—,uj sin(3 Ar,) +(Z, —3Z, =3 yVZ )cos(3 Ary)  —p Acos(3Ar,) —(Z, -3 —3 yVE,)sin(3 Ar,)

cos(5 4r)) sin(3 Ar,)

o=

The determinant of the coefficient matrix of Eq. (27) is
Dy = —p, A sin’ (L Ar,)+ (2, - 1% —1 yVE )cos(3 Ar,)sin(3 Ar,)

(27)

+p Acos’ (L Ar)+(Z, - 12, —3 XVZ )sin(5 Ar,)cos(3 A7)
=—uA (sinz(%ﬂrd )— cosz(%/”trd)) +(Z, —3Z, —3 VX, )sin(4r,)

. - (28)
Using Cramer’s rule, ¢, and ¢, are

1

[ 1. Acos(1 Ar)E, +(Z, —12, —L 2 )sin(d Ar,)Z, |

CS=

D,

(26)

») .
- Dd [, Acos(t Ar,) +(Z, —42, —4 V& )sin($ Ar,) | (29)

and
1

[—u.Asin( Ar)S, +(Z, —1X, —1 V2 ) cos(3 4r,)Z, |

06:

D,

(26)

-2 .
=t AsinG An)+ (2~ 3 0% Jeos(3 Ary) | (30)

The first moment R, of the count rate distribution, which is the usual singles count rate, is
Rl :%Zdﬂder(%rd)‘ (31)
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The second moment R, of the count rate distribution is

R,=,8+,S,,, (32)
where
=] @, (2 0) 00 =-v 12, 27 | a6 o) 60 (33)
and o o
S, = f/; dr(@] f q(2.,6 ") :[V(Vv_ 1)] f ar, j/; dr(# (")) . (34)

In Egs. (33) and (34), y is the induced-fission spectrum as before and y, , is the spontaneous-fission
spectrum. Using PARTISN, a vector y, and the Nuclear Data Interface (NDI) at LANL, the induced-
fission spectrum is defined for mixtures (in a one-group problem) as
!
Z Zivo-f,iNiJ{i
7= i:l] ,
2 vo NS,
i=l1

where f, is the spectrum weighting function and / is the number of fissionable isotopes. If the NDI is

(35)

not used or if a matrix y is used, f; =1. For the one-group problem, y, . =1.

Also in Egs. (33) and (34), v and v(v —1) are the first and second factorial moments of the fission

multiplicity distributions. These are given as isotopic nuclear data.'*!> The products v(v —1)% , and

(V(V -1) / v )S’f' g are defined for mixtures as

v(v-DE, = iNiV(V_l)io-f,i (36)
and )
v(v-1) R v(v-1)
SR

Only isotopes with data for the moments of the multiplicity distributions will contribute to the material
quantities v(v—1DX, and (v(v—l)/ﬁ) , q.

The Feynman Y asymptote is

Y= Fj (38)
The forward and adjoint scalar fluxes are
$r) = (v, (M) +y_ (1) = ¢, cos(Ar) +, (39)
and
(1) =4V () +¥ (1) =1((e, +¢5) cos(Ar) + (¢, + ¢ sin(Ar)), (40)
respectively.

An Equal Opportunity Employer / Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA
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The volume integral of the square of the adjoint scalar flux is
74/2 . 5 1 /2 ) )
[ dar(#) = 4 [ dr((cy+c)cos(Ar)+ (e, +¢,)sin(4r))
-1,/2 -1y /2
1 ry/2
=5 j dr((c; +¢;) cos’ (Ar) + (¢, +¢,)’ sin® (Ar)
“14/2

+2(¢; +¢5)(c, +¢;)sin(Ar) cos(Ar))

= 8%[(03 + Cs)z (/17’}1 + Sil’l(/ird)) + (C4 + Cé)z (/bﬂd —Sil’l(ﬂl’d))]- (41)

The volume integral of the square of the adjoint scalar flux multiplied by the forward scalar flux is
af

j; dr ( 4 (r))2 é(r) = %f; dr((c3 +¢) cos” (Ar) +(c, +¢, ) sin® (Ar)

+2(c, +¢5)(cy +¢)sin(Ar) cos(Ar)) (¢, cos(Ar) +, )

- %f; dr((c; +c;) cos*(Ar) + (¢, +¢,)’ sin® (Ar) cos(Ar)
+2(c:+ ¢s)(c, +¢,)sin(Ar) cos® (Ar))

v, | arlg )

-1y /2
= 6%[% (c; + 05)2 (9 sin(3 Ar,) +sin(3 Ar, )) +(c, + cé)2 sin’ @& ﬂrd)]

a2 ) 42
vy [ dr(g0) “

—ry/2

The inner product of the forward and adjoint angular fluxes is
1 1y/2 7a/2

Jau | dry iy = [ dri(v.ew () +v (. ()
-1 -y /2 -ry /2
/2
- % j dr [(03 cos(Ar) +c, sin(Ar))(c, cos(Ar) —c, sin(Ar) +y,)
—1y/2
+( 5 cos(Ar) + ¢4 sin(Ar)) (¢, cos(Ar) + ¢, sin(Ar) +y,, ):|
ry/2
j dr| c,(c;+ ;) cos’ (Ar) +¢,(c, —c,)sin’ (Ar)
—14/2

+(c,(c, +¢) +¢,(cs —¢y) ) sin(Ar) cos(Ar)

1
2
e (C3 +¢s )cos(Ar)+ Yp (6’4 + CG) sin(/Ir)]

1 ) .
:z[%cl (¢; +¢;)(Ar, +sin(Ar)))++ ¢, (¢, —c,) (Ar, —sin(Ar,))

43
+yp(c; +¢5)sin(E Ar,)]. 43)
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I1I. Derivatives with Respect to an Arbitrary Input Parameter (Material Property)

We seek the derivative of the Feynman Y of Eq. (38) with respect to an arbitrary input parameter o
that is a material property. The derivative with respect to the slab width is worked out in Sec. IV.

To begin, we note that we will need the derivatives of the input parameters appearing in Egs. (1a)
through (4b) and (33) and (34): macroscopic material cross sections 2,, X, and VX ,; the material

fission spectrum y; the source rate density g; the slab width 7, ; induced-fission neutron number
distribution moments v and m ; and spontaneous-fission neutron number distribution moments
v, and v(v-1), ;.- In this memo, we will not take derivatives with respect to the detector response
function X, or the spontaneous-fission spectrum y, .. We will also assume the direction cosine x, is

known perfectly.

The derivative of y, of Eq. (11) is

oV, _ 1 oq q 0Z, -2, —xyVZ,)
da, X ,-X —yvE,o0a, (%,-%,-p%,) oa,
Velq v, OE TR oE) (44)
q Oa, X, -X —yvZ, oa,
The derivative of 4 of Eq. (12) is
0Z,-Z, —yvz,
oA _ 1 oz, (S, -5 - pE)-1, & %, -1Z))
Ooa, 2,u+\/—2, -z, -z, Oa, : oa,
X (3, -, — g O, -, — yvx
R e R 5, -5. - 475, )4, =, %, - %))
2:Ll+ (_Zt(zl _Zs - szf)) aax l . aax
0Z, -2 —yvx
- A 2 (2, -2, - yVZ,)+E, (7%, — %))
2(-2,2, -2, - 2 ) 0, - da,
_A[ 1z, N 1 O, -2, —yVZ,)
2\ %, 0a, (Z,-%,- %)) oa, ' (45)
The derivative of 1/ is
L(l) __ 1A
ba \1) 1 éa. (46)

An Equal Opportunity Employer / Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA



To Distribution —9—

We will need the derivatives of sines and cosines. They are
osin(alr,) Osin(alr,) 04

=ar, cos(alrd)aa—
a

oa, oA Oa, ’
and
Ocos(adry) _0cos(adr) 04 __ g 0
oa, o1 oa, o

where a is an arbitrary coefficient that does not depend on « .

The derivative of D of Eq. (15) is

oD oA ocos(Ar,)
—=—u, —cos(Ar)) — u A———4
aax /u+ aax ( d) /u+ aax
X, —12 -1 yvx i
O D P A f)sin(/lrd)—(Z,—%Zs‘—%;(vzf)asm(h")
Oa, ‘ oa,
=—U, ﬁcos(/irg,) + u Ar, sin()md)ﬁ
oa, oa,
o, -1 —1
- (=22 a2V f)sin(/ird)—(Z,—%ES—%;(VZJ,);;, cos()md)ﬁ
oa, oa,

[0 coNCAr) + 1Ay sin(Ar) = (2, ~ 1, ~4 28, cos(hry) o
: a

s
X

O, -3, -5 XVZ))
oa

X

sin(Ar;)

= [—(/yz+ +(Z, —3Z, =3 xVE I, )cos(/lrd) + A, sin(/lrd)]aa—/1
a

OEZ, —3Z, -3 2VE))
oa

X

sin(Ar;).

The derivative of 1/D is

i(lj__La_D
oa \ D D’ da,

An Equal Opportunity Employer / Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA
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The derivative of ¢, of Eq. (18) 1s

oc, Oy, 1 )
6_05: - ?‘:B(Zt sin($ Ar,) + p, Acos( Ar,))

1 .
+y, a(;j(& sin($ Ar, ) + w, A cos($ Ar,))

X

. oa

(Ll 1
Ve ﬁsin(% Ar)+Z, OsinG Ar,) + U, O cos(Ar,)+ ,uj—a cos(3 Ar,)
D |\ O oa, oa, .
- %%(zt sin(L Ar, )+ i A cos(3 Ar,))

X

oD .
_%J(Zt sin(3 Ar, ) + w1, Acos($ Ar,))

Ve Esin(% Ar))+Z, %1, cos(3 /bfa,)ﬁ + U, ﬂcos(% Ar))—p ALr, sin(3 Ar, )ﬁ
D |\ Oa, oa, oa, oa

oy, 1 oD .
- (a—lo//;’B _%aj(zt sin($ Ar, ) + p, Acos($ Ar,))

+ Y gsin(% Ar))+Z, 41, cos(% lrd)ﬂ + U, 8_/1005(% Ar))—p A+r, sin(: lrd)ﬂ
D | Oa, Oa, Oa, a,
[ Love 10D\, Ve G
yp Oa, D oa, Dy, 0a,

s Ar, oA
+%[(Td+M]cos(%ird)—%Sln(%l”d)}£~ G

X

An Equal Opportunity Employer / Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA
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The derivative of ¢, of Eq. (19) is

oc, Oy, 1 .
a—azx = ?ég[ﬂj sin(3 4r,) - (Z, -2, —;(VZ‘f)cos(%/lrd)]

o (1 :
Ve 5_% (Bj [ﬂJ“ Sm(% ﬂ’rd) - (Zt - Zs - szf) COS(% Ard )]
7788 oA . osin(3 Ar,)
+2 u, ——sin(t Ar))+ y A ——2—4=
D (M oa Sz Az + 4, 0

X X

™ cos(z Ar,)—(Z, X, - yVZ,) P

X X

L0 =X - ocos(+ ﬂrd))

oy, 1 .
= aZP B[ﬂj sin(2 Ar,)—(Z, - Z, —ZvZf)cos(%}trd)]

X

oD :
—%a[mi sin(3 Ar,) — (2, —Z, — yVZ,)cos(3 A7, )}

X

D

0z, -2, —yvx
0, - —x _f)cos(%,lrd)Jr(zt_zg_;(sz)%rg,sin(%xlra,)ﬂ
da. ‘ : oa,

X X

+ ¥ U, ﬂsin(% Ar))+ pu A+r, cos(3 /lrd)ﬂ
oa oa

_ [%%_%STDJ[ pAsin(t )= (2, — X, — yVE )cos($ Ar,) |

+ﬁ[ﬂ+ ﬂsin(% Ar))+ u A5 r, cos(3 /1’11)86—&

D oa, x,
0Z, -2 —yvx
97 f)cos(%/ird)jt(zt—ES—)(VE;')%’}JSin(%/l’"d)ﬂ
oa, da,
o -2 —yvx.
_ La‘//P _i@_D ¢, _Yr (2, =2, v f)cos(%/ird)
l//P aax D aax D aax

74 r . U AT oA
+EPKM +?"(2t =2 —;(VZ/.)Jsm(%/ird)+Tdcos(%/1rd)}a.

X
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The derivative of ¢, of Eq. (24) is

oc, —-X, O T, 0, +xVZ))
80; == P ( j(Z + yVZ)sin(3 Ar,) - Da—axsm(zlrd)
1
——(Z iy f)ésm(z/lrd)
>, oD 3, o=, +1v2))
2D26—(z + 2V, )sm(z/ird)——Dsm(iﬂrd)ﬁ—%/

> oA
—ﬁ(zs +ZVZf)%”d COS(%/lrd)a—

X

= _%S_OZZ_ ZZD sin(1 Ar,) 8(2s;r0iv2f) _ Zztdl;d (Z, +;(v2f)cos(§/1rd)%,
The derivative of ¢, of Eq. (25) is
882_: - _i 56 ( 1 j(z +7VZ,)cos(3 /If’d)—f—Dﬁ(Zg—OZ‘E)coS(%/Ird)
—5—;’)(25 +;(V2f)%jfr"’)
221)2 S—D(Z +xvx, )cos(zﬂmd)—E—Dcos(1 A ﬂ%

. oA
+$(2S +VE )5 H sm(%/lrd)a—
¢, 0D X, | O, +xVZ,) Z.r, e oA
=——————=cos(3 Ar. + X+ Vi, )sin(3Ar,) —
Doa, 2D GAn) oa 4D (2, + 72, )sinG d)fia

X X
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The derivative of ¢; of Eq. (29) is

oc 0 .
aasx =—Zda( )[y+/1cos(é/1rd)+( ,—32 —%;(VZf.)sm(%/ird)]
2, oA X ocos(3 Ar,)
——4| y, —cos(F Ar) + u A———
D |:lu+ aax COS(2 rd) ﬂ+ a g
oE, -13 —L s, in(L
il b E A TR VEN P ;zs—ﬂvz,v)—asm(zw}
oa, Ja,
X, oD
02 ™ [ pAcos(EAr)+ (2, —15, —1 2 )sin(t Ar) |
z oA : oA
_Ed{% a—axcos(%lrd)—yj%rd sm(%/lrd)a
oE, —1%, —1 %,
+ (2 722, 752 f)sin(%ﬂmd)+(2t—%25—%;(VZ/,)%};,cos(%/irﬂ,)ﬂ
oa, Ja,
oz -1 -4
-5 oD _Z, (2, 2 4V f)sm( LAr)
Doa, D oa,

(55)
_%Kﬂ++%’(z 13 ——ZVZ )]cos(z/lrd) ﬂ*j sin(3 4 d)i| o4

X
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The derivative of ¢, of Eq. (30) is
0% __s i(i)[—er/lsin(%ﬂrd)ﬁ—(Z[ 13 108 eos(LAr,) |

oa, “oa \ D
z, oA . dsin(4 Ar,)
- —pu, —sin(t Ar)) - p A———4=
D{ M, oa, sin(3 Ar,) — 4, oa.
oz, 12 —ipZ 1
+ ( el )cos(iﬂrd)Jr(Z ;ZS—%ZVE/.)—(%OS(Z/W")
oa, Ja,
%, oD .
=D_ffza—%[—y+ﬂsm(%/1rd)+(21 32, —3 XV, )cos(3 /”er)]
) oL . oA
_Ed{_m a—axsm(% Ar))—p A+r, cos(3 ﬂ.rd)a—ax
o 12 —IpnZ
A 220 s Ar,) ~ (5, ~ 5, 4 208, ) o1 sin( ) -
oa, Ja,
oz -1 -1
__% 0D %, 0, 2 Y f)cos(%ird)
Doa, D oa,
(56)
_4e —(y++r—d(Zt 32— XVZ, )jsm(—/”trd) #Ary cos(é/id) ('M
D 2 2 ]
g /2 5
The derivative of I dr(¢*(r)) of Eq. (41) is
-1y /2
o " . w1 84 . .
. J/Zdr(¢ (r) =- e [ (ey + ) (Ary +sin(Ar)) + (e, +¢,)’ (Ar, —sin(Ar,)) ]
1 Oc, Oc ) oA osin(Ar,)
+—| 2 S+ — |(Ar, +sin(Ar,)) +(c; +¢5)’ + 4
8/{ (c; + 5)( “. 0axj( r,+sin(Ar,)) +(c; +¢5) (aaxrd Ser J
oc, Oc . oA osin(Ar,)
+2(c4+06)[6—0;‘x+a—02j(1rd—s1n(ﬂ,rd))+(c4+c6)2(aax - o 4 H
]2
1 o4 Oc;  Oc .
- +— c — (Ar, +sin(Ar
Mawj/z (¢ () {u 5)[ . aaj(  +sin(27,)
oc, Oc .
+(¢y +6’6)(60:x + 602{ ](/“d ‘Sm(ﬂrd))} (57)

+8r_d,1[((c3 o) = (e, + ) eos(Ar) + (e + ) + (e +c6)2]ﬂ'

X
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14/2

The derivative of j dr(¢s"‘(r))2 #(r) of Eq. (42) is
“14/2
0 j/ 4 () " 4(r )— o 1 — [ 3¢y +¢,) (9sin(L Ary) +sin(Z Ar)) + (¢, +¢,) sin (3 4r,) |
a d 2 61 3 5 2 d 2 d 4 6 2 d
G ﬂ 1 2 in(Ll (3 2 30301
S [4(c3+c5) (9sin({ Ar,) +sin(3 Ar,))+(c, +¢,)’ sin (zlrd)]

c oc oc ) .
+a{% 2(c;, + cs)(aoj + a_o;j (9 sin($ Ar,) +sin(2 Az, ))

X

+%(c3+cs)2(9aSiI;(iMd)+aSiI;(§M”’)J 2(e, + 6)(864 506]9“3(%/1”4)
+3(c, + CG)Z Sinz(% d)w}
6 2 ! /2
o J/zdr(¢ ") Wpﬁ_x J/zdr # ()
1 &, K R i N
"o J/zdr(¢ Q) ¢(r)—t//P_J/2dr(¢ ") }
Loal" .o o 2}
————| | dr(¢ (") o)y, | dr(¢(r)
Aoa, _—r:!./Z ( ) —J/z ( )

c oc oc . )
+§{%(c3 5)( 3X aaiJ(9sm(%ﬂrd)+sm(%ﬂrd))

+(e,+e,)? (9” cos (Mrd>—”“+3 Hm—‘]
2 oa 2

X X

+2(c, +c6)(§;4 +§%Jsin3(% ar,)

X X

+3(c, +¢,)* sin® (3 Ar,) L, cos(L ﬂrd)aa—/i}
aX

/2 . 5 o r./2 . 5

2 ar(§ o) vy | dr(g0)

x -1y /2 x -1y /2
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]2 ) 74/2 . )
:(cia%_%%}{ J'/zdr(¢*(r)) W)=y I/Zdr(¢ (") }

X

(e, +¢,) Oy , 06 sin® (& Ar, )
oa, Oa,

La {(03+cs)£%+%j(9sin(%ﬂrd)+sin(%/1rd))
a, Oa,

x (58)
+%[(c3 +¢;) (3eos(d Ar,) +cos(3 Ar,))
2 . 2 aﬂ/
+4(c, +¢4) sin” (3 Ar, ) cos(3 lrd)]—
oa,
/2 5 o g /2 5
+—2L | dr(¢’(r)) +v,— | dr(¢ (r)) .
a, J/z ( ) P dar, J/z ( )
The derivative of R, of Eq. (31) 1s
R iy .G
da, T Ba,
1 in(L
=134 ﬁcos(%ﬂmﬁ,)Jrc1 9cos(; ﬂrd)Jr oc, sin($ Ar,)) +¢, 651n(2/1rd)+81//P
oa, oa, oa, oa,
oc 04 Oc, oL oy
=13 —Lcos(+ Ar,)) - Ar) 2+ L sin( )+ 2 cos(t ar ) 2L+ TYr
2=k oa. (3 A1) ——-=sin(3 d)aax da, (3 4r,) 2 (A1, oa. 50()(]
| oc oA
=131, gcos(zlrd) 1Ar)+ Z” 2(c2 cos(+4r,) —¢, s1n(2/1rd))£}. (59)
Using Eq. (36), the derivative of ,S of Eq. (33) is
/2
0,S [ ON, 0 ) Ry
= v-1)o,,+N—v(v-1).0,,+Nv(-1 dr r r
Sor (aa VDo N v(v=D),0,,+Nyv(v-1), aszg/z (4 () ¢(r)
al 74/2 a 1a/2 (60)
+v(v-DZ, dr(¢ (r r+y — dr r r) |
(v-D, |2 awj/z (¢ (") o) Zaax J/ () 9r)
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Likewise, using Eq. (37), the derivative of ,S, ; of Eq. (34) is

azss,f,zlazviq(v<v1>} a2 o
s i

oa, da, '\ ¥ V.. 0a, s
q (viv— o, , , - | W,
Vs 4 Sof i aax v sfoi 6ax ) '—rd/2
;)2 /2
v(v—1) X, s N2, 0 £ 2
*[Tj | q(zzs_f. Pl [ ar(¢) el [ ar(¢®) |
s.f. X -1yf2 x =1y /2
Using Eq. (35), the derivative of the induced-fission y is
vo, N, f, o« =
aZ / > X i
—— = vo, .N,f. 62
il PACIRY (62)

X

0, otherwise.

This derivative is examined in detail in Appendix A. The derivative of the spontaneous-fission spectrum
X 18 zero for all inputs; see Appendix B.

Finally, the derivative of the Feynman Y of Eq. (38) is
or _L[GZS n azss-f}_ S+, OR,

da, R\0da, oa, R}  Oda,
1(0,S 0,5, OR
= + -Y—L 1. 63
R, [ﬁax Oa, oa, (63)

IV. Derivatives with Respect to the Slab Width

We seek the derivative of the Feynman Y of Eq. (38) with respect to the slab width r,.

The derivative of y, of Eq. (11) and the derivative of 4 of Eq. (12) with respect to the slab width are

Z€ro.

We will need the derivatives of sines and cosines. They are simply
osin(aAr,)

=aAdcos(al
or, a (adr,) o
and
gcos(adr,) _ —aAsin(adr,), )
or,

where a 1s an arbitrary coefficient that does not depend on 7, .
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XCP-3:19—018(U) (LA-UR-19-2????
The derivative of D of Eq. (15) is
oD —pd ocos(Ar,) (3, -is i pE) osin(Ar,)
8rd or, ‘ ' or,
= A . Asin(Ar) —(Z, =1 %, —1 % Ycos(Ar,) |- (66)
The derivative of 1/D is
ﬂ(ij__La_D
or,\ D D’ or, (67)
The derivative of ¢, of Eq. (18) is
Oc, o (1 osin($ Ar)) ocos(L Ar))
—L=y,— 2, sin(3 Ar,) + p, Acos(L Ar, — oy A——2 4
o Y 6rd(Dj( (3Ar)+ p Acos(3Ar,)) + D( o AR
=L oD (S, sin( Ar,) + g1, Acos(E Ar,) ) +22 £2(2, L Acos(d Ar)) -, A” Lsin(3 Ar,))
D or, D
_q 0D ypA : s
__5%4-5(2, cos($ Ar,)— p, Asin(3 Ar,)). (68)
The derivative of ¢, of Eq. (19) is
oc, o0 (1 :
% =Y, %(Bj[ﬂj sin(2 Ar,)— (2, - Z, —;(VZf)cos(%/ird)]
in(L 1
Ve lujasm(z/lrd) S-S ocos(z Ar,)
D or, : or,
_ ‘gf; ZD [ 1 Asin( Ar) (3, =%, — 102, )eos(t 4r,) |
+ 2 (4 2% Leos(h ar) + (2, 2, - yvE )L Asin( Ar,))
D 2 Ma t s 772 2 Ma
c, 0D w4 .
_ _52%+$( pAcos( Ar) +(Z, - X, - pVZ )sin(t Ar,)). (69)
The derivative of ¢, of Eq. (24) is
oc, —-X, 0 osin(X Ar))
— = X 4+ VX, )sin(t A ——dZ+ vy, ) ——2 42
ardza(j<x)(2rd) ( N
ZzDz S—D(Z +;(v2f)sm(2/1rd)——d(2 +yVE, )3 Acos(3 4r,)
d
oD X,A 1
=——— , cos(3 Ar,). 70
b i BB o) (710)
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XCP-3:19—018(U) (LA-UR-19-2????
The derivative of ¢, of Eq. (25) is
1
g 24 0 ( j(Z +VE, )cos(z/ird)——(E + VZ/,)—aCOS(z;er)
6rd 2 8 T’d
-2 Dy iz, )cos(;zrd)+—(z + V8,) L Asins Ar,)
2D or,
c, 0D X, A T
=——+ sin(+ Ar)).
Do, ap P)sinGA%) (71)
The derivative of ¢ of Eq. (29) is
oc o (1 .
Fo d%(DJ[,ujcos(l/lrd)+(Z —1%, 1 )sint Ar,) |
z, ocos(E Ar,) osin(: Ar,)
_Zd A——r2trdl Ly Ly Ly > I R27d )
D |:/’l+ 8}"d ( t 2 s ZZ f) a}"d
%, 9D [ Acos( Ar,)+ (2, —1Z, —L E Ysin( Ar) ]
Dz 6 2 7Ma 255 2 f 2 Ma
_%[—y+/12 Lsin( Ar,) + (5, ~1%, ~1 V2 ) dcos( Ar,) |
c 8D z,A
= 1;8 oD Asin(z Ar) = (2, —3Z -3 V2 )cos(z/lrd)] (72)
The derivative of ¢, of Eq. (30) is
ocy o (1 .
Fo %(Bj[—yjt sin(4 ) +(Z, -+, —% V2 )cos(3 Ar,) |
(L 1
_a{_ﬂjwﬂzt_%ES_%M)M
D r, ‘ T,
z, oD
D2 o | —p, Asin( Ar) + (2, — X, ~1 1VE ) cos(L Ar) |
_2_5[_#+/12 Yeos(tAr,) ~(3, ~4%, ~1 V2 ) Asin( Ar,) |
¢ oD T, .
__BZJF D [ L Acos($Ar)+(Z, 12, —%ZVZ/,)sm(%/”er)] (73)
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g /2
The derivative of I dr ¢ (r)) of Eq. (41) is
—ry/2
7,]2 ‘
a (¢ (7")) 2(C3 +CS) %—l_% (ﬂ]"d +Sin(/1rd))+(03 +CS)2 A+ 65111(1’/‘11)
d )2 or, or, "
(e, +ey)| Lor Lo (Ar, —sin(Ar,))+(c, +¢,)’ | A— osin(4r,)
o, ard or,
1 Oc, Oc .
= g{z(‘% 5)[ r: a’; j(ﬂrd +sin(Ar,))+ A(c; +¢)* (1+cos(4r,)))
oc, Oc, . )
+2(cy +co)| == +—= |(Ar, —sin(Ar,)) + A(c, +¢)* (1—cos(4r,))
or, o,
1 oc, Oc .
= H{(C@ 5)(7; + a—r:J(ﬂrd +sin(Ar,))
oc, Oc .
+(c, + C(,)[ 6}’: r: J(ird sm(/ird))} 74

+%|:(c3 £ (e, +¢) +((ey+e) = (e, +) )oos(Ar,) |
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14/2

The derivative of j dr(¢"(r))2 #(r) of Eq. (42) is
“14/2
72
ai j r(¢'() ¢(r)—gcl 6/1[ (cy +¢)’ (9sin(d Ar,) +sin( Ar, ) ) + (¢, +¢,) sin’ (4 Ar,) |

4 /2

c ey | Ocy . .

Ty Ta

osin(} Ar,) | dsin(3 ﬂrd)J

+4(c+¢)’ [9 o o
d d

+2(c, + CG)(% + %J sin® (& Ar,)
7 7

+3(c, +¢,)*sin’ (3 Ar,)

dsin(L Ar, s
sitsal, 2 oo

Tq Ta =,

]2 5 g2 . 5
_ 1% { [ dr(8 ) 9=y, | ar(¢ (r))]

cl 8 Ty -1y /2 —ry/2

+&{% (c, + 5)(803 805 j(9 sin(3 Ar,) +sin(Z Ar, ))

64 or,  or
+4(c;+¢5)* (9% Acos(L Ar,) +3 Acos(3 Ar))
+2(c4+06)[ac4 4 % )sm (3 4r)

or, or,
o /2
#3(e, eg)sin’ G r) s Acos An) [+ v oo [ dr(d )
-1y /2

Log [ . . o)
=——t [ dr(¢'() ¢)-v, | dr(¢'()

Cl al"d _rd/z —}’{1/2

or, ra

¢ |1 oc, Oc . )
+§{E(C3 5)[ 34+ 65}(9sm(%/1rd)+sm(%/1rd))

+% (¢; +¢5)° (3cos(3 Ar,) +cos(2 Ar,))

(75)
+2(c4+c6)(@+ac Jsm L ar,)
or, r,
34 o " 2
+22 (e, +¢,) sinz(%/”trd)cos(%/ird)}+ W, — j dr(¢'(r)) .
2 oy
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The derivative of R, of Eq. (31) 1s
R, _ oy, (574)

or, TRkl or,
d d
1 in(L
15 ou Zc] cos(Lr,) Cl@cos(zﬂrd) oc, sin(L A7) czasm(zftrd)J

ra ¥ y ¥

—1% 4, %cos(% Ar))—c L Asin(t Ar,)+ %sm@ Ary)+ ¢, L A cos(L /14,)]

T4 T
=154, %cos(%ﬂrd)+%sin(%/1rd)+i(—cl sin(2 Ar,) +c, cos(t Ar,)) |. (76)
| or, or, 2
The derivative of ,§ of Eq. (33) is
rg/2
0, —— 0 . 0\2
22—y =02, — [ dr(#' () 40) (77)
rd ard -r/2
and the derivative of ,S, , of Eq. (34) is
0,8, [v(v-1 o i RS
e =( v )j 0z | (g o). (78)
Ya 4 s.f. Ya

The derivatives of the integrals are given by Egs. (74) and (75).

Finally, the derivative of the Feynman Y of Eq. (38) is the same as Eq. (63),
)4 _L((%S L0:5,, _YaRIJ

% R\ or, or, or, (79)

V. Test Problem
The test problem used a slab with width », =4 cm. Regular 2 ordinates, u, = irl/ NE) , were used.

The material was plutonium with the composition given in Table 1. Its mass density was 14 g/cm?>. The
full SENSMG input file is listed in Appendix C.

Table 1. Isotope Densities.

Isotope Density (atoms/b-cm)
Pu-239 0.03385770516
Pu-240 0.001404851530

The neutron source rates from spontaneous fission of the two plutonium isotopes are given in
Table II. These were computed using SOURCES4C (Ref. 16). Using the atom densities of Table I in
Eq. (13), the total neutron source rate density for the material is ¢ = 585.3096779 neutrons/cm*-s. There
are no (a,n) target isotopes.
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Table II. Neutron Source Rates.

Isotope Neutrons/s/(10?* atoms)
Pu-239 5.90346862E+00
Pu-240 4.16492268E+05

The collapsed one-group isotopic cross sections from MENDF71X are given in Table III. The one-
group macroscopic cross sections for the material of Table I are given in Table I'V.

Table II1. Isotope Cross Sections.

Isotope Cross section Value (b)
Pu-239 o, 15.7163619565586
Vo, 10.2411266737305
o, 10.1783768717624
o, 5.5379850847962
o, 3.49285663782976
y® 2.93202033052627
o, 2.04811558813393
Pu-240 o, 13.8900165766247
Vo, 1.62998350059655
o, 11.7932743116862
o, 2.09674226493853
o 0.519536226613049
y® 3.13738179765193
o, 1.58295129168442

(a) v does not appear alone in the cross section data. It is
vo, divided by o, from the cross section data.

Table IV. Material Cross Sections.

Cross section Value (cm™)
2, 0.551633360359619
V2, 0.349030932243582
2, 0.361184282597102
2, 0.190449077762516

The first and second factorial moments of the multiplicity for induced thermal fission of Pu-239 and
spontaneous fission of Pu-240 are given on Table V. Note that Pu-239 induced-fission v in Table V is
different from the one-group v in Table III, but these values are used independently, so the inconsistency
causes no difficulty.
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Table V. Fission Neutron Multiplicity Data'’

Event v v(v-1)
Thermal fission of 2**Pu 2.8794 6.7728
Spontaneous fission of >*°Pu 2.1563 3.8242

The response function was X, = 0.009875877948. It is shown in Table VI with other parameters

that are presented in the text but do not appear in a previous table. It is an interesting quirk of the NDI
that the spectrum weighting functions are isotope-dependent, but the difference in the values shown in
Table VI has only a very small effect on the results.

Table VI. Other Parameters

Parameter Value
H, 1/\3
q 585.3096779 neutrons/cm’-s
2, 0.009875877948
Apu239 1.0
Z})u 240 1 -0
Jeunsg 13.5759794880
Jeurao 13.5759619332
Xs.f.pu23o 1.0
Xs.fpu2do 1.0

The responses computed using the equations of Sec. II and the input values presented in this section
are shown in Table VII and compared with values computed using SENSMG (with PARTISN used for
the Sz fluxes). A fine mesh spacing of 0.0005 cm was used, yielding 8000 meshes. A convergence
criterion of 1071° was used.

Table VII. Responses.

Response Analytic SENSMG Difference
R, 1.57256464E+02 1.572564E+02 —0.00001%

R, 7.54409818E+02 7.544096E+02 —0.00003%

Y 4.79732153E+00 4.797320E+00 —0.00002%

Derivatives of material parameters needed to compute 0Y /e, appear in six combinations: 0%, /«,
appears in the derivative of ¢, [Eq. (51)]; 0(Z, —X, — xVX,) / o appears in the derivatives of y, , 4, and
¢, [Egs. (44), (45), and (52)]; O(Z, =3, -3 ¥VE ) / o, appears in the derivatives of D, ¢,, and ¢,

[Egs. (49), (55), and (56)]; O(Z, + ¥VE,) / o, appears in the derivatives of ¢, and ¢, [Egs. (53) and
(54)]; g/, appears only in the derivative of w, [Eq. (44)]; and the derivative dy/c, appears in the
derivative of ,S [Eq. (60)].
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V.A.1. Sensitivity with Respect to the Pu-239 Total Cross Section

The macroscopic cross section for reaction x for a material is

1
T, = le No.,. (80)
The derivative of X, with respect to the Pu-239 microscopic total cross section is
ox
P 81)
t,Pu

The derivatives of £ and VX, are zero, so
0, -2, —pvZ,) OE —3X —30V2;) 0%

t
= = Npyoo- (82)
ao—t,Pu239 ao—t,Pu239 aGt,Pu239 !
Also
O, +xVvZ,)
—— £ . (83)
00, purso
The derivative of the source rate density is zero,
oq
=0. (84)
00, pung

All of the derivatives used in the derivatives of ,§ and ,S, , [Egs. (60) and (61)] are zero except for the

last term:
74/2
0,8 —_— , 0 . \2
=v(v-DX, x dr(¢ (r)) ¢(r), 86

00, pu239 ! O, pu239 r;[/z ( ) (80)
0,8, v(v—1 o AT

275 :[ (_ )J q;{sz'f' j dr(¢ (r)) i (85)
00, pu239 4 Sf. 00, purso —r/2

Relative sensitivities from SENSMG are compared to analytic values in Table VIII. The relative

sensitivity S, , of response R to parameter ¢, is
_a, OR 87)
4 R da,

The SENSMG relative sensitivities are extremely accurate for this problem.

Table VIII. Relative Sensitivities to o, 5,53 -

Sensitivity Analytic SENSMG Difference
RG o —3.832364E+01 —3.832363E+01 —0.00002%
Ry.0, sy —1.138792E+02 —1.138792E+02 —-0.00004%
Y,0, bz —7.555561E+01 —7.555560E+01 —0.00001%
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V.A.2. Sensitivity with Respect to the Pu-239 Fission Cross Section

The total macroscopic cross section for a material can be written

1
Zt = zf + Zzother = Z]Vio-f,i + Zzother' (88)
i=1
The derivative of X, with respect to the Pu-239 microscopic fission cross section is
ox
Py — = Npyoo- (89)
f.Pu239

The macroscopic cross section VX, for a material obeys Eq. (80), so the derivative of vZ . with respect to

the Pu-239 fission cross section is

ovx
a—f = Npu23oVpu2so- (90)
O/ pu23g
The derivative of X is zero, so
‘ L= puzso (1= X Vpuzso)» 91)
aaf,Pu239
oz, -1 —InZ,
(2%, =3 0V2,) = Npuoso(1=L 2Vpi030) (92)
ao—f,Pu239
and
0, + V)
a—f = ¥ Npu230Vpunso- (93)
O/ pu239
The derivative of the source rate density is zero,
0
_ 99 =0. (94)
aUf,1>uz39
All of the derivatives used in the derivative of ,S, , [Eq. (61)] are zero except for the last term:
a S ) _ ra/2 .
295 _ (v(v_ I)J fIZf__,-, 0 I dr(¢ (r))z . 95)
00/ purso 5t 00/ puzso ~74/2
The derivative of the induced-fission moment ,S of Eq. (60) is
6 2S -~ 2 rd/z * 2 T 2 a rd/z * 2
S = NV Dz’ [ dr($ ) 60+ D2 ——— [ dr(¢°() 90 96)
O f pu23o )2 Oy pu23o —, )2

Relative sensitivities from SENSMG are compared to analytic values in Table IX. The SENSMG
relative sensitivities are extremely accurate for this problem.
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Table IX. Relative Sensitivities to 0, p, 530 -

Sensitivity Analytic SENSMG Difference
R0 puzso 1.993885E+01 1.993885E+01 0.00000%
Ry\0 puso 6.059542E+01 6.059541E+01 —0.00002%
Y.0 puno 4.065657E+01 4.065657E+01 0.00000%

V.A.3. Sensitivity with Respect to the Pu-239 v

The derivative of the macroscopic material V2, with respect to the Pu-239 v is

OVE,
P — = NPu239o-f,Pu239‘ 97)
Vbu239
The derivatives of X, and X are zero, so
ox
—=0, 98
aVl’u239 ( )
O, -2, - V%)) OYVE,
== =—xN, 12390 £ pu239> 99
aVPu239 aVPu239 ' ' ( )
O, =3, —310V%Z,) 10p%Z, 1
: e T L AC !
anum 5 anum 5 XV pu2390 1 puso (100)
and
O, +xVE,) OyvE,
= = ZNPu2390-f,Pu239- 101
a VPu239 a VPu 239 ( )
The derivative of the source rate density is zero,
9q
=0. (102)
OVhuso

All of the derivatives used in the derivative of ,S, , [Eq. (61)] are zero except for the last term:

— /2
8,5, , :[v(v_—l)J i —2 [ ar(g ). (103)
4 s.f.

s.f
OVpuzso OVpurso -, /2

We assume that v(v —1),,,; is independent of v, ,,, and therefore

OV(V =103

=0. (104)
OVpyasg
Then all of the derivatives used in the derivative of , S [Eq. (60)] are zero except for the last term:
7y /2
0, —= 0 o )2
2= —y(v-DE, 2 j dr(¢'(r)) 4(r). (105)
OVpuzso Vhu2so -, 2

Relative sensitivities from SENSMG are compared to analytic values in Table X. The SENSMG
relative sensitivities are extremely accurate for this problem.
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Table X. Relative Sensitivities to vy, s -

Sensitivity Analytic SENSMG Difference
R oz 2.845602E+01 2.845602E+01 —0.00001%
Ry Veusso 8.492993E+01 8.492992E+01 —0.00001%
Y Vpuzzo 5.647390E+01 5.647390E+01 —0.00001%

V.A.4. Sensitivity with Respect to the Pu-239 Scattering Cross Section

The derivative of the material ¥, and X with respect to the Pu-239 microscopic scattering cross

section 1S

%) ()N
t — = Npyso- (106)

ao_s,Pu239 ao-s,Pu239

The derivative of the macroscopic cross section V2, for a material is zero, so
OZ,-Z,— VX)) _

0, (107)
ao—s,mw
O, 2%, =3 0V%,) |
- =2 Npuosos 108
aO-S,Pu239 pon (108)
and
0Z,+xvZ))
5—:Npuzw- (109)
ao_s,Pu239
The derivative of the source rate density is zero,
dq
——=0. (110)
a0s,1>uz39

All of the derivatives used in the derivatives of ,S and ,S, , [Egs. (60) and (61)] are zero except for the

last term:
74/2
0,8 —_— . \2
22 =y -2, ——— [ dr(¢' () 40, (111)
00, pyaso 5.Pu239 1, /2
525sf- (V(V—l)j ) P 74/2 . 5
S - — qr., — | dr(¢ (n)) . (112)
00, pu239 sf. ! 00, punso —)‘:,[/2 ( )

Relative sensitivities from SENSMG are compared to analytic values in Table XI. The SENSMG
relative sensitivities are extremely accurate for this problem.

Table XI. Relative Sensitivities to o, p, 53 -

Sensitivity Analytic SENSMG Difference
R0, puzso 3.462156E+00 3.462155E+00 —0.00002%
R0 puso 1.065800E+01 1.065800E+01 —0.00004%
Y., puzso 7.195848E+00 7.195847E+00 —0.00002%
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V.A.5. Sensitivity with Respect to the Pu-240 Induced-Fission Spectrum

For this one-group problem, PARTISN constructs the material induced-fission spectrum y using
Eq. (36):

_ Zpu239vo-f,l>u239NPu239fPu239 + Zpu240V(7_f',pu240NPu240fpu24o

(113)
VGf,Pu239NPu239fPu239 + VO__;‘,Pu24oNPu24ofpu240
The unnormalized derivative of y with respect to the Pu-240 fission spectrum is Eq. (62):
8}( _ VO_f,Pu24ONPu24OfPu240 (1 14)

a/’{Pu240 VO_f,Pu239NPu239fPu239 + VGf,Pu24ONPu24Ofi’u24O
The derivatives of all of the material cross sections with respect to the Pu-240 fission spectrum are zero,
SO

a(zt _ ZS B szf) —_ 8(;(1/2]-) - _ VO__/‘,Pu240NPuz4ofPuz4oVZ_/ (1 15)
OX burao OX buzao VO py 239V pu230 fpuzse VO, py 240V pu2a0.Spu240
0, —3%,—3 ZVZ_/') __ o3 ZVZ/‘) _ _l VO-f,Pu240NPu240fPu240VZf (116)
O burao O X pura0 2 VO py 2130V puns0Spuzso + VO py 240V pu240 pu240
and
o, + szf) _ a(ZVEf) _ VO_f,Pu24oNPu240fPu240V2f (117)
O X puao X purao VO ; puazeNV puzzoSpuzze + VO ; puaaoNV Pu240 Pu240
The derivative of the source rate density is zero,
0
_-o. (118)
O pu2ao

All of the derivatives used in the derivative of ,S, , [Eq. (61)] are zero except for the last term:

0,8, [v(v-1 o IRY:
225 { - )j ar, [ ar(s ). (119)
ONopy230 4 Sf. OXpurao )2

The derivative of the induced-fission moment ,S of Eq. (60) is

SR v P I/ dr(¢ (1)) $r)+ 2 I/ dr(§) g | (120)
Xriro ! O purao -y Arw24o 1, /2

Relative sensitivities from SENSMG are compared to analytic values in Table XII. The SENSMG
relative sensitivities are extremely accurate for this problem.

Table XII. Relative Sensitivities to y,,,,, (Unnormalized).

Sensitivity Analytic SENSMG Difference
RisZounio 1.879239E-01 1.879239E-01 0.00000%

Ry Zoanio 5.736636E-01 5.736636E-01 —0.00001%

SY soun 3.857397E-01 3.857397E-01 —0.00001%
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V.A.6. Sensitivity with Respect to the Pu-239 Atom Density
The derivative of X, with respect to the Pu-239 microscopic atom density is
o0z,
N, s = O pu2so- (121)
The derivatives of £ and VX, are likewise O, p, 559 and Vo, p,55, SO
oZ, —X,—yv&,)
=0, pu239 ~ O pu2zo ~ XVO s pu2zos (122)
a]VPL1239 l
O, -3, -3 XVZ)) 1 |
=0, pu230 ~205.pu230 2 AVO 1 punsos (123)
a]\']Pu239
0, +xVZ,)
—— =0 + yvo, .
Ny s.pu230 T XVO £ punso (124)
The derivative of the source rate density is
oq
(125)

= dpu2szo>
6]\/PL1239
the neutron source rate per 10°* atoms of Pu-239. All of the derivatives used in the derivative of , S, ,

[Eq. (61)] are zero except for the last term:

0,8, , v(v-1 o P £ 2
20 :[ - )j ar, [ ar(sm). (126)
ONpy230 4 Sf. ONpy230 —r)2
The derivative of the induced-fission moment ,S of Eq. (60) is
6 S - /2 . 2 - a /2 . 2
2 = V(DO e’ | dr(87()) g +v(v =D, 2 [ dr(§) p(r). (127)
a Pu239 -r; )2 6 Pu239 -, /2

Relative sensitivities from SENSMG are compared to analytic values in Table XIII. The SENSMG
relative sensitivities are extremely accurate for this problem.

Table XIII. Relative Sensitivities to Ny, 55 -

Sensitivity Analytic SENSMG Difference
Sk Novww 1.841439E+01 1.841439E+01 —0.00003%
Sy Nprs 5.643495E+01 5.643495E+01 —0.00001%
SY Nours 3.802056E+01 3.802056E+01 0.00000%

V.A.7. Sensitivity with Respect to the Pu-240 Atom Density

The equations of Sec. V.A.6 apply with Pu239 changed to Pu240 except Eqgs. (126) and (127). All of
the derivatives used in the derivative of ,S [Eq. (60)] are zero except for the last term:

0,8 PR
ﬁ:v(v_l)z/;/ j dr(¢'(r)) $(r). (128)
Pu240 Pu240 —rd/2
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The derivative of the induced-fission moment ,S, , of Eq. (61) is

0,5, (‘”(V—D] , e (veD) e,
——= - ToarioXeyr | drl@ (M) +| ——| qr., —— | dr(¢ (v)) .
N, Pu240 v s.f.,Pu240 e J/Z ( ) v s.f. ! GNPUMO 51[/2 ( )

(129)

Relative sensitivities from SENSMG are compared to analytic values in Table XIV. The SENSMG
relative sensitivities are extremely accurate for this problem.

Table XIV. Relative Sensitivities to Ny, ,,, -

Sensitivity Analytic SENSMG Difference
Ry Npyouo 1.141884E+00 1.141884E+00 —0.00004%
Ry Npuoso 1.442549E+00 1.442549E+00 —0.00001%
Y Npao 3.006647E-01 3.006647E-01 0.00000%

V.A.8. Sensitivity with Respect to the Material Mass Density

The relative sensitivity of a response to the material mass density p is the sum of the relative

sensitivities of the response to the isotopic atom densities.!® For this problem, that means

Se, =S

= +
R.p R, Npy239
Equation (130) was used for the analytic sensitivities. The adjoint-based equation of Refs. 8 and 9 was

used for the SENSMG sensitivities.

Relative sensitivities from SENSMG are compared to analytic values in Table XV. The SENSMG

SR,Nr'u 20"

relative sensitivities are extremely accurate for this problem.

Table XV. Relative Sensitivities to p.

Sensitivity Analytic SENSMG Difference
Sk p 1.955628E+01 1.955628E+01 0.00000%
Sk, 5.787750E+01 5.787750E+01 —0.00001%
Sy, 3.832122E+01 3.832122E+01 —0.00001%

V.A.9. Derivative with Respect to the Slab Width

Derivatives from SENSMG are compared to analytic values in Table XVI. The SENSMG
derivatives are extremely accurate for this problem.

Table XVI. Derivatives with Respect to 7, .

Sensitivity Analytic SENSMG Difference
OR, [or, 7.688378E+02 7.688377E+02 —0.00002%
OR, or, 1.091584E+04 1.091583E+04 —0.00008%
oY/or, 4.595981E+01 4.595979E+01 —0.00004%
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An equation for the adjoint-based derivative of the Feynman Y to interface locations and the outer
boundary has yet to be derived formally. Presently, SENSMG uses a straightforward extension of the
equation for the derivative of the leakage,!”'® applying a similar formula to the adjoint-based equation of
Refs. 8 and 9. This is a work in progress.

VI. Summary and Future Work

This report has presented analytic derivatives of the Feynman Y for a homogeneous slab with
isotropic scattering and S2 quadrature, and it has compared sensitivities from SENSMG with the analytic
sensitivities for several isotope cross sections, Pu-239 v, Pu-240 induced fission y, isotope atom
densities, the material mass density, and the slab width. The SENSMG results are all extremely accurate.
Sensitivities for any other material parameter can also be compared, except that SENSMG does not
presently compute sensitivities with respect to the second factorial moment of the induced-fission
multiplicity distribution, the first or second factorial moment of the spontaneous-fission multiplicity
distribution, or the spontaneous-fission source rate per atom of a source isotope.

The derivative with respect to interface locations is a particular capability we are addressing.

It is possible to derive a multigroup, multiregion analytic solution for $2 transport in a slab."
However, it is not clear to this author how to derive analytic derivatives from the solution given in
Ref. 19. This would make a good project for a student.

This work represents just one verification of SENSMG’s new multiplicity sensitivity capability.
More thorough verification tests will be realistic and multigroup. This report only verifies (in part) the
SENSMG calculation of the Feynman Y and its sensitivities. It does not validate the SENSMG
calculation of the Feynman Y.
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APPENDIX A
DERIVATIVES OF THE INDUCED-FISSION SPECTRUM y

For a G-group problem using the NDI and a y vector, PARTISN constructs the material fission
spectrum y using
G
2 2 Vo N fE
yE == : (A1)

I G
Z Z vo N JE

i=1 g'=1

1
=1

where f;* is the group-dependent spectrum weighting function and / is the number of fissionable
isotopes. For a one-group problem, Eq. (A.1) becomes Eq. (35), repeated here:
1

Z ZiVU/',iNifi
= (A.2)
2 vo NS,
i=l1
The derivative of y with respect to the fission spectrum of isotope i is Eq. (62),
oy Vaf,iNifi
3, < (A.3)
Zi ZVO'f,waff
i'=1
The derivative of y with respect to the v of isotope i is
1
vo,.N.f.
oy _ Zio-f,iNifi _ ;Zl 7 lfl O-szzfz
ov. T I I
Yo N e, N Yve, N,
=l i'=l i'=1
O'f,iNifi
=(x-x)7"—— (A.4)
v, N,
i'=1
The derivative of y with respect to the fission cross section of isotope i is
1
Vo, N.f,
o _  xviNJ iZ::,Zz relNed ViN.J,
T T i
09y, Zvo_f,i'Ni'f;’ ZVO_/',,"Ni'fi' ZVO_/'JN,"ff
i'=1 i'=1 i'=1
VN,
=2 (A.5)
2vo, NS,
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The derivative of y with respect to the atom density of isotope i is
1
vo..N.f.
aZ B ZiVO'f,,-f,- ~ ;Zl fii lf; VO-j lfl‘
ON; ZI:VO' N.f ZI:va N.f. ZVO' N.f.
— itV — 1t 4 1 itV
vo . fi
=(x-x )— (A.6)
ZVG/ N f

In the one-group problem, y = y, =1 in the unperturbed case, so dy/dv,, 8;(/ oo ,,,and Oy /0N, are

all zero.

In the multigroup case, however, these derivatives are not zero. To take one example, the derivative
of y* of Eq. (A.1) with respect to the atom density of isotope i is

1 G G
o X Zvcrf,ff D XE D VO N Zvcrj’f,,-ﬁg
X _ _ =l g'=l
1 I G
NSNS Y NS Y Yt N

i'=l g'= i'=1 g'=1 i'=l g'=
G ’ ’
S o
_ > > g'=1
=(xf-2°)= — (A7)
22 Vol Nufi
=1 g'=1

which is not zero for /> 1. Equation (A.7) gives the unconstrained derivative.

Using N, =a,N , where a, is the atom fraction of isotope i and N is the atom density of the material,
in Eq. (A.1) yields

1 G
z;(;gZVO'fp:iaiNfig' z;( ZVO'flalfg
i=1 g'=1

g i=1 =

=7 =T 1 G (A.8)
2.2 volaN [ >Yvotafs
i=l g'=l i=1 g=l
Therefore the derivative of y* with respect to the material atom density is
oy
=0,
N (A.9)

and this conclusion holds in the one-group case.
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APPENDIX B
DERIVATIVES OF THE SPONTANEOUS-FISSION SPECTRUM gy, .

For a G-group problem, SENSMG constructs the material spontaneous-fission spectrum y;, using

Z[:qu,-
g

Xy = ; (B.1)

For a one-group problem, Eq. (B.1) becomes

=1 (B.2)

ZqiN
i=1

Clearly, for the one-group problem, the derivative of y, . with respect to all input parameters is zero.

In the multigroup case, the derivative of y¢, with respect to the atom density of isotope i is

I G
¢N, ¢
A ,Z:;q’ ’ ;q
ON 1 G I G I G
COX D aEN, 22 aEN, 22 g,
i'=1 g'=1 i'=1 g'=1 i'=1 g'=1
G '
. ;qf
=5 _fof- I G ) (B.3)
Dt 224N,

4
which is not zero for /> 1. Likewise, the derivative of 7, with respect to the source rate density in

group g’ due to isotope i is

a}(‘5./’- Ni ; qig Ni, Ni
s G
WYY, zqu N X g,
i'=1 g"= i'=1 g"= i'=1 g"=1
- (5gg’ ~Xss. )1—1 (B.4)
ZZfN
i'=l g"=

Equations (B.3) and (B.4) give the constrained derlvatlves.
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APPENDIX C
SENSMG INPUT FILE FOR THE TEST PROBLEM

The SENSMG source code was modified to run this problem using 0.0005 cm/mesh.

two-isotope slab

slab feyny

mendf71x

1 / no of materials

1 94239 -0.96 94240 -0.04 /

-14.00 / densities

1 / no of shells

4. /
/ material nos
/ number of edit points
/ number of reaction-rate ratios

O O - O

The following command line was used to run the input file above:

${SENSMG} -i slab -fissdata 2 -srcacc no for+adj -misc no -epsi 1l.e-10
-isn 2 -isct 0 -ngroup 1 -np 1 -chinorm none
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